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Abstract: In adaptive optics scanning laser ophthalmoscope (AOSLO) systems, capturing 
multiply scattered light can increase the contrast of the retinal microvasculature structure, 
cone inner segments, and retinal ganglion cells. Current systems generally use either a split 
detector or offset aperture approach to collect this light. We tested the ability of a spatial light 
modulator (SLM) as a rapidly configurable aperture to use more complex shapes to enhance 
the contrast of retinal structure. Particularly, we varied the orientation of a split detector 
aperture and explored the use of a more complex shape, the half annulus, to enhance the 
contrast of the retinal vasculature. We used the new approach to investigate the influence of 
scattering distance and orientation on vascular imaging. 
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1. Introduction 

When illuminated, retinal structures may directly scatter light back through the system pupil, 
and be captured directly by the imaging system, or may scatter light in other directions [1]. If 
an image is formed from these other portions of light that have undergone additional 
scattering and subsequently exit the pupil, the images are generically referred to as indirect or 
multiply scattered light images [1–3]. While most images are actually combinations of singly 
and multiply scattered light, confocal images emphasize the singly scattering light whereas 
multiply scattered light images reveal information about structures that may otherwise be 
nearly transparent and not readily imaged using confocal imaging [2–6]. 

In current adaptive optics scanning laser ophthalmoscope (AOSLO) systems, two main 
approaches are utilized to capture multiply scattered light: 1) an offset aperture displaced 
from the center of the point spread function (PSF) [4] and 2) a split detector in which the 
center of the PSF is removed and light in two directions is collected [5]. Chui et al. [4] first 
utilized multiply scattered light imaging within an AOSLO by using an offset aperture to 
improve imaging of vascular wall structures that were not readily observed in confocal 
imaging. Pathological changes to the vessel wall structure are of particular interest in subjects 
with diabetes and hypertension and have been observed with this technique [7, 8]. 
Furthermore, this approach has proven useful in characterizing the murals cells of the retinal 
vasculature [9]; to detect subclinical vascular and cystic changes in subjects with diabetes [7]; 
characterize wall-to-lumen ratios (WLR) in normo-, hypo-, and hypertensive subjects [8]; 
provide perfusion maps comparable to AOSLO fluorescein angiography [10]; and detect 
erythrocytes in small capillaries to compute blood flow velocity [11]. Similar to the offset 
aperture, split detection systems have proven useful in imaging the retinal microvasculature 
producing similar results to those of an offset aperture [12] and the detection of cone inner 
segments [5]. Both split detection and offset aperture variations of multiply scattered light 
AOSLO imaging enable the inner segments to be visualized and this has proven useful in 
improving our understanding of photoreceptor structure in several retinal diseases affecting 
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the photoreceptors. In particular, indirect imaging of the cones provides additive information 
regarding the integrity of photoreceptors whose outer segments are not functioning or 
oriented properly in choroideremia [13], outer retinal tubulation [14], and achromatopsia [15–
17]. The use of multiply scattered light photoreceptor imaging is expanding rapidly and is 
currently being investigated as a potential biomarker for therapeutic interventions in some 
hereditary retinal degenerations [18]. 

Additionally, there has been a focus of the adaptive optics community on using multiply 
scattered light imaging to improve visibility of other retinal cells not readily imaged with 
confocal imaging approaches. Rossi et al. [19] recently demonstrated the ability of AOSLO 
systems to image retinal ganglion cell (RGC) layer neurons in both monkeys and humans by 
capturing images of the same retinal region with multiple offset aperture configurations. 
Contrast of the RGC layer neurons could then be further enhanced by combining contrast 
across scattering directions. 

The light captured in multiply scattered light imaging arises from both scattering and 
refraction of the incident light, and is also dependent on the path of light until the next 
scattering event. Given the heterogeneity of sizes and scattering distances, more flexible 
approaches to collecting multiply scattered light should enable improvement of the contrast of 
structures of interest. In this study, we used a spatial light modulator (SLM) in a retinal plane 
of our AOSLO to serve as an aperture to image multiply scattered light. By programming 
specific shapes onto the SLM, non-standard aperture configurations can be chosen and 
manipulated dynamically. In the current work we implement such a system and investigate its 
applicability to imaging the retinal microvasculature. For this work we concentrate on testing 
the utility of using an SLM to improve understanding of light tissue interactions that control 
the contrast of imaging the inner retina. 

2. Methods 

2.1 Subjects 

Nine eyes from nine normal subjects (23-34 years of age, mean ± SD, 26.6 ± 3.4, 6 males and 
3 females) with no retinal pathology and one eye from one hypertensive (HTN) subject  
(31 year old female) were imaged. Informed consent was obtained prior to imaging in all 
subjects. The research was approved by the Indiana University Institutional Review Board 
and complied with the tenets of the Declaration of Helsinki. 

2.2 AOSLO system 

For this work we used a new AOSLO system similar to the Indiana AOSLO previously 
described [20–22]. The current AOSLO is a dual-channel system that combines a Shack 
Hartmann (SH) wavefront sensor with two deformable mirrors in a woofer-tweeter design 
[22, 23] that corrects for optical aberrations over a wide range of refractive errors. Two 
simultaneous imaging channels (769 nm and the other at 840 nm) derived from a 
supercontinuum laser (Fianium, NKT Photonics, Birkerod, Denmark), are used to scan the 
retina. Each detection channel contains retinal conjugate apertures that can be manually 
configured at the retinal plane and the light from the retina is detected using avalanche 
photodiodes (APD, Pacer C30659-90, together with custom amplifier and temperature 
controller). For both channels, the Airy disk diameter (ADD) at the plane of the confocal 
pinhole was 50 μm. In the first imaging channel (769 nm) light was imaged onto a 2 Airy disk 
diameter (ADD) confocal pinhole. Light passing through the pinhole from the center of the 
PSF formed the confocal image. The surround of the pinhole was a reflective metallic surface. 
Light reflecting from this surface, from the outer portions of the PSF, was refocused onto the 
SLM as described below. In channel 2 (840 nm), a 10 ADD pinhole was displaced 6 ADD 
superiorly with respect to the retina to collect multiply scattered light images as previously 
described [4]. Channel 2 was intentionally spatially offset from Channel 1 [11]. 
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Figure 1 incorporates a Zemax drawing (Zemax, LLC, Kirkland, WA, USA) in a 
schematic diagram of the channel 1 detection scheme. Light reflected from the surface of the 
confocal pinhole contains most of the multiply scattered light (the outer portions of the PSF). 
To capture as wide an extent of the PSF tails as possible we used a reflective stainless steel 
aperture (Edmund Optics, Barrington, NJ, USA) where the reflective surface was 190 ADD 
wide. This reflected light is re-imaged by two lenses at 1:1 magnification onto a second 
retinal conjugate plane where an SLM is placed (DLP6500FLQ, Texas Instruments, Dallas, 
TX). This enables the SLM to serve as an additional aperture at a retinal conjugate plane for 
collecting multiply scattered light. 

 

Fig. 1. Zemax schematic of channel 1 detection. Light from the retina passes through a 
confocal pinhole at the first retinal conjugate plane (R1’) to produce a confocal image. The 
PSF surround is reflected from the pinhole surface and re-imaged to a second retinal conjugate 
plane (R2’). A series of lenses (L2-L3) are utilized to maintain a 1:1 magnification ratio at the 
SLM after the reflected light passes through a turning mirror (M1). At R2’ light is reflected to 
either the ON or OFF detector by an SLM (micromirror array) acting as a programmable 
aperture. A. Example of a split detector configuration on the array (ON = white, OFF = black). 
B. Example of a half annulus configuration on the array. 

The SLM consists of a 1920x1080 micromirror array. The micromirror array has a 7.56 μm 
(0.15 ADD) pitch and a 2.55 μs micromirror crossover time. The micromirrors have two tilt 
angles, ± 12°, with respect to the flat state and we term the positive tilt direction as the “ON” 
state while the negative tilt direction is termed the “OFF” state. The micromirrors are 
arranged in a diamond configuration and tilt around the diagonal. We oriented the chip so the 
axis of rotation was vertical, allowing us to keep our detectors in a horizontal plane. The fill 
factor of this SLM is 92% and the diffraction efficiency specification is 86%. We did not use 
the chip designed for near IR, since in general the amount of light available under our 
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conditions of interest is much higher than available through the confocal aperture. This 
allowed us to work with an array that we estimate to be about 60% efficient overall. The 
impact of diffraction from the SLM was larger in the off state, due to the angle on incidence 
on the mirrors, but lenses L4 and L5 had sufficiently large apertures to collect all major 
diffraction orders. By providing the SLM control mechanism with a binary map, virtually any 
pattern can be programmed onto the SLM. To generate the pattern onto the SLM, custom 
MATLAB software (Mathworks, Natick, MA, USA) generated the aperture shape and 
communicated with the SLM controller via USB. Thus, for example, to enable a split 
detection aperture commonly used by others [5, 12], we can program half of the array to the 
“ON” state and other half to the “OFF” state (Fig. 1(A)). Likewise, in this study, we also 
utilized a related shape, a half annulus, where the half annulus shape is programmed to the 
“ON” state, while the remainder of the mirrors are in the “OFF” state (Fig. 1(B)). Light from 
both the “ON” and “OFF” states are each then focused onto separate APD detectors by a pair 
of lenses. In this way we generate 3 simultaneous images (Fig. 2) from channel 1:1) confocal 
image, 2) multiply scattered light image from the “ON” state of the SLM, and 3) another 
multiply scattered light imaged from the “OFF” state of the SLM. From channel 2 we 
generate 1 multiply scattered light image with a fixed offset aperture. 

 

Fig. 2. Simultaneously acquired images of a venule and arteriole in a normal 34 year old male. 
Venule images (A-E). Arteriole images (F-J). A and F. Confocal images from the first channel 
(2 ADD centered aperture). B and G. Offset aperture images (10 ADD displaced aperture) 
from the second channel. C, D, and E. ON, OFF and ratio multiply scattered light images of 
the venule obtained with a split annulus orientated at 270° with an inner radius of 5.3 ADD 
and outer radius of 22.7 ADD. H, I and J. ON, OFF and ratio multiply scattered light images 
obtained with a half annulus oriented at 45° and with an inner radius of 8.3 ADD (H) and an 
outer radius of 22.7 ADD. Excellent wall contrast of both the arteriole (H and J) and venule (C 
and E) is generated with the split annulus apertures. The insets depict the aperture 
configuration at the center of the SLM with the red asterisk indicating the portion of the array 
generating the image. Scale bar = 50μm. 

2.3 AOSLO imaging session 

Each subject was dilated with 0.5% or 1% tropicamide ophthalmic solution and axial lengths 
were measured (IOL Master; Version 5; Carl Zeiss Meditec, Dublin, CA, USA) prior to the 
imaging session. In each imaging session we measured changes in contrast of one or more 
features for a series of aperture conditions. For this work we concentrated primarily on 
smaller retinal arterioles and venules between 20 and 50μm since they have different wall 
structures and quantification of changes to small vessels are important for understanding the 
impact of both diabetes [7, 24] and hypertension [8]. To limit the number of shapes used we 
concentrated on a subset of variations of two simple shape configurations that provided both 
flexibility to investigate scattering distances and orientations and were likely to be sensitive to 
a range of retinal features; a split detector (Fig. 1(A)) and half annulus (Fig. 1(B)). 
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In each subject 2-4 ROIs were selected in a single imaging session. At each ROI, the 
system was carefully focused in the plane of the feature since all imaging modes are very 
sensitive to best focus. For the non-confocal modes this is presumably because contrast of 
small, high spatial frequency targets is dependent on the size of the scanning beam. At each 
ROI, either a 1.2° x 1.3° or 2° x 1.8° imaging field captured 2-4 videos of 100 frames  
(30 frames/second) with each programmed aperture variation. Between 4 and 12 different 
aperture variations were used at each ROI dependent on what programmed feature of the 
aperture was systematically varied. For the split detection configuration we concentrated on 
the orientation of the split between the “ON” and “OFF” detectors. For all subjects and all 
regions of interest (ROI’s) splits were oriented at 0° or 90° with respect to the retina. For the 
half annulus we varied three parameters; 1) inner radius, 2) outer radius, and 3) the angle of 
orientation of the half annulus (axis of where it is halved). 

To measure the scattering distance of retinal features, in 3 subjects, we began with a  
10 ADD inner radius and 20 ADD outer radius and increased inner and outer radii together in 
5 ADD increments until a half annulus ending with a 25 ADD inner radius and a 35 ADD 
outer radius. The half annulus orientation was held constant at 270° with respect to the retina. 

To measure variations in scattering at smaller angular distances, in 9 subjects, the outer 
radius was held constant at 22.7 ADD while the inner radius was varied between 2.3 and  
11.3 ADD in 1.5 ADD increments. The half annulus orientation was held constant at 270° 
with respect to the retina. 

To measure the impact of scattering direction, in 9 subjects the inner and outer radii of a 
half annulus were held constant at 8.3 and 22.7 ADD while the orientation of the half annulus 
was rotated in 45° increments from 0° to 360° with respect to the retina. 

2.4 Image processing 

After the imaging session, videos were corrected for sinusoidal distortions, aligned, and 
averaged, generating both standard averages and optimized averages [25] using custom 
Matlab programs. 

The SLM utilized did not allow us complete control of mirror timing. To avoid mirror 
overheating in some applications the SLM manufacturer hard codes brief “flips” of the 
mirrors in the control system. These flips create high contrast black and white lines 
throughout the image, representing a few percent of each image. As the images generated 
from the SLM have low contrast, we removed these lines by computing the z-score of each 
pixel across all image frames, and removed all pixels with values outside 2 standard 
deviations from the mean or approximately 5% of the pixels. The resulting images were 
typically free of artifact from these mirror resets. Because alignment is performed on the 
confocal images, and these necessarily have identical eye movement components to the 
images from the SLM channels, this suffices to remove the impact of eye movements and 
SLM artifacts. 

From the resulting “on” and “off” images we also calculated a contrast image by 
normalizing the difference of the two images by the sum similar to computations typically 
performed using a split detector configuration (Fig. 2.(E) and (J)) [5]. 

3. Results 

3.1 SLM performance as an aperture 

When placed at a retinal conjugate plane, an SLM can effectively be used as a configurable 
aperture. The SLM produces images of comparable quality to those generated by both our 
standard confocal and offset aperture images (Fig. 2) although specific image features 
depended systematically on details of the programmable aperture used. Multiple aperture 
configurations could be rapidly generated and loaded onto the SLM allowing multiple views 
of the same feature to be obtained within an imaging session (Fig. 2-5). For the current study, 
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within one imaging session lasting between 45 and 60 minutes, 4-12 aperture configurations 
were utilized for up to 4 ROIs. In general, the “OFF” detector had larger signals and lower 
contrast than the “ON” detector, other than for the split detector configurations (Fig. 2(C) vs. 
Fig. 2(D) and Fig. 2(H) vs. Fig. 2(I)). This occurred presumably due to the inclusion of a 
much larger proportion of the extended PSF being directed to the “OFF” detector than the 
ON” (Fig. 1), and the fact that it included a much wider range of angles and distances. 

 

Fig. 3. Arteriole ratio images with different apertures. Small arteriole in a healthy 34 year old 
(A-D). Large arteriole in a hypertensive 31 year old (E-H). Mural cell contrast in the small 
arteriole is higher with a smaller inner radius (A, 3.8 ADD vs. B, 11.3 ADD) but not for the 
larger arteriole (E and F) for a fixed outer radius of 22.7 ADD. Orthogonal split detector 
orientation of a small (C and D) and large (G and H) arteriole. When the split detector is 
roughly orthogonal to the cell walls (C and H), the contrast of the mural cells is higher, 
whereas, when the split is roughly parallel to the wall itself, the contrast of the wall border is 
higher (D and G). Contrast of the small vessel branch (C and D, blue arrowheads) is highly 
dependent on the orientation of the split detector. Scale bar = 50µm. 

3.2 Scattering distance and direction 

The retina scatters light in various directions and angles depending on the properties of the 
tissue and the local anatomy. For blood vessels the contrast of the vessel wall was improved 
with multiply scattered light imaging generated with the half annulus aperture, as opposed to 
the directly reflected light captured in the confocal image (Fig. 2(A) vs. Fig. 2(C), 2(E) and 
Fig. 2(F) vs. Fig. 2(H), 2(J)). Additionally, the contrast of the vessel walls is also improved in 
comparison to the standard offset aperture images (Fig. 2B and Fig. 2G) [4]. This increased 
contrast, as discussed below, is dependent on the characteristics of the aperture used for 
detection. 

Varying the inner radius of the half annulus had an impact on contrast of the fine details 
of the vessel wall structure presumed to be mural cells [9]. For example, the contrast of the 
mural cells in smaller arterioles improved with the small to moderate inner radii tested  
(2.3-8.3 ADD) compared to imaging with a larger inner radii (Fig. 3(A) vs. Fig. 3(B); 6.4% 
vs. 4.9% Michelson contrast). At larger inner radii, scattering from the moving red blood cell 
column contributed more to vessel contrast (Fig. 3(B)). While we only imaged 5 larger 
vessels in this study, the walls were always visible and as a result the size of the inner radius 
did not have as great an impact. This is apparent in images of a larger arteriole in a 
hypertensive subject with thickened walls (Fig. 3(E) vs. Fig. 3(F)). For venules, where 
vascular walls are thin and usually difficult to image, small to moderate inner radii also 
improved the contrast (Fig. 2(C)-2(E)). In general, vessel wall contrast continued to decrease 
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at larger distances dropping to near zero beyond 30 ADD when both the inner and outer radii 
were increased (Fig. 4). However, for these larger distances scatter from the moving red 
blood cells predominated the images (Fig. 4).The contrast of structures also depended on the 
orientation of the aperture chosen. The impact of orientation was qualitatively similar for both 
the split detector (Fig. 3) and the half annulus (Fig. 5). Depending on orientation, the split 
detector may highlight fine vessel wall structure (Fig. 3(C) and Fig. 3(H)) or increase contrast 
of the wall edges compared to the surrounding retina (Fig. 3(C) vs. Fig. 3(D); 20% vs. 35% 
Michelson contrast). The split detector orientation is also more sensitive to the contrast of the 
entire vessel structures. For example, when a small (13 μm) vessel branch is oriented parallel 
to the split, the contrast of the branch to the surrounding retina is high (Fig. 3(C), blue 
arrowheads) compared to when the branch is orthogonal to the split and the contrast between 
it and the surrounding retina decreased to immeasurably low values (Fig. 3(D), blue 
arrowheads). The half annulus, however, generally produces higher contrast for small features 
and did not show as strong an angular dependence for entire structures. Instead, individual 
murals cells of the vessel walls oriented orthogonal to the aperture had the highest contrast 
but there was not as large a reduction in contrast between the surrounding retina and the 
vessel walls (Fig. 5). The half annulus also revealed a cellular array similar to that previously 
described [12, 19] just below the nerve fiber layer. While the array is evident in many of the 
split detector images (Fig. 2), the half annulus seemed more sensitive to enhancing the 
contrast of these presumed retinal ganglion cell (RGC) layer neurons [19]. This array often 
followed the orientation of the overlying nerve fiber layer bundles (Fig. 5). 

4. Discussion 

4.1 Improved efficiency 

Multiply scattered light imaging in AOSLO systems, whether via split detection or offset 
aperture methods, has provided increased ability to image and interpret retinal vessel structure 
in normal eyes and changes to these structures arising from disease processes [4, 7–10, 12]. 
While systematically controlling the aperture direction and displacement has been shown to 
be beneficial [4], previous implementations required aperture parameters to be manipulated 
via electronic motor or manually, which can be time consuming and limit the number of 
scattered light images that can be collected. For example, Chui et al. [4] showed that when the 
direction of offset of an offset aperture is orthogonal to the orientation of the blood vessel, the 
contrast of the mural features of only the wall orthogonal to the direction of offset is 
maximized. Thus, when an offset aperture is maintained in a fixed position, potentially 
beneficial information from that vessel of the light scattered elsewhere may be lost. Likewise, 
split detectors are also generally left in a fixed orientation and entire structures may be lost 
(Fig. 3(D)). Using an SLM as a rapidly configurable aperture enables the orientation and 
displacement of a particular shape to be easily configured, improving the characterization of 
the feature of interest by capturing the scattered light at different distances and directions in 
an efficient manner, that for predetermined shapes and orientations, is only limited by the 
time to select an aperture and upload it to the SLM. Since it is possible to preload shapes, 
switching could be done very rapidly. Figure 5 demonstrates the change in wall contrast that 
is obtained simply by collecting the scattered light at different orientations and these images 
could be further combined into one summation image to include all features obtained with the 
various apertures similar to the work of Rossi et al. [19] to improve RGC layer neuron 
visibility. 
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Fig. 4. Wall contrast depends on distance from the center of the PSF with a half annulus 
oriented roughly parallel to the vessel. Contrast was measured between the vessel wall and 
surrounding retina by integrating intensity values parallel to the vessel and averaging along 
roughly 70 μm (red box). As the inner radius increased from 10 ADD (A) to 25 ADD (D) in 5 
ADD increments, contrast decreased from 21.3% (A), 13.5% (B), 10.6% (C), to 2.4% (D). The 
outer radius was maintained at 10 ADD larger than the inner radius. Scale bar = 100 μm. 

In addition to time efficiency, our detection scheme also enables more efficient use of 
light returned from the retina. By using the entire PSF, and directing the light to two, or 
potentially more, additional multiply scattered light views we have the same advantage of the 
split detector approach, but now with the ability to optimize the orientation. 

4.2 Optimizing conditions for retinal vasculature imaging 

For smaller vessels imaged with a half annulus and fixed outer radius, it appears that the wall 
contrast of individual mural cells had a broad optimum for inner radii between 2.3 and  
8.3 ADD. When the inner radius was larger, the contrast of the fine detail of the vessel wall 
structure diminished. Exact details seemed to depend on vessel orientation and retinal 
thickness (see below). 

In contrast with Chui et al. [9], we often resolved the wall structure and laminar flow in 
venules (Fig. 2(C) and Fig. 2(E)). While decreasing the inner radius helps to capture the small 
scatter from the venule walls, the more specialized shape of the half annulus also likely 
improves the contrast of these and smaller structures as well. With a half annulus, more of the 
PSF center is removed compared with an offset aperture that is limited in its angular extent. 
Thus, we are more selectively capturing the scattered light with a half annulus and more 
background scatter is removed further improving the contrast of small vessel structures. 

For the few larger vessels (> 50µm) imaged, varying the inner radius did not qualitatively 
have as large of an impact of viewing the vessel wall structure (Fig. 3(E), 3(F)) as for smaller 
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vessels. This difference in contrast could arise from the fact that larger vessels are generally 
located in regions where the retina is thicker compared to the smaller vessels that were the 
primary focus of this study. The thicker retina could enable those structures to scatter longer 
distances before a second scattering. As we were limited in the number of larger vessels 
imaged in this study, further investigation into optimal aperture parameters should be 
investigated for larger vessels and vessels located in thicker retina. 

For vessels of all sizes, strong scatter from the erythrocytes moving through the vessel 
was evident even with large displacements of the half annulus from the center of the PSF. 
Even when both the inner and outer radii were displaced greatly (Fig. 4(D)), time varying 
scatter from the center of the vessels was still visualized although individual erythrocytes 
were not. 

 

Fig. 5. Retinal feature contrast varies with half annulus orientation at a fixed inner and outer 
radius (8.3 ADD and 22.7 ADD) in a healthy 24 yo subject. Arteriole wall contrast of the 
parent vessel changed with the half annulus angle orientation (compare A and I vs C and G). 
An array of presumed ganglion cells are visible at all orientations and follow the orientation of 
the nerve fiber layer. The confocal image (E) is shown for comparison. Scale bar = 100 μm. 

4.3 Other retinal structures visualized 

Although the primary focus of this study was on imaging the retinal vasculature, other 
transparent cells, presumably RGC layer neurons were consistently identifiable when focused 
on the inner retina and utilizing the half annulus aperture on our SLM (Fig. 5). While we were 
often collecting scattered light in a similar range of displacements from the center of the PSF 
as Rossi et al [19], comparable contrast of the RGC layer neurons in our study was achieved 
with just one half annulus image (100 frames or less) and did not require combining contrast 
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across images (Fig. 5). Similar to the venule walls, these low contrast cells may benefit from 
the decreased background light provided by a half annulus aperture. 

While we focused primarily on half annulus and split detector configurations, additional 
apertures including an annulus, single quadrants, and dual quadrant configurations were also 
successfully utilized. However, these data (not shown) did not further enhance imaging of the 
retinal vasculature although we did not explore the full range of possible parameters. In 
theory, any binary shape could be uploaded to the SLM and in the future, further specializing 
the aperture shape could enable better resolution or enhanced contrast of the structures 
presented here as well as other translucent bodies in the retina. 

4.4 Limitations 

While efficiency was improved using the electronic control of the SLM to change aperture 
parameters compared to conventional methods, we were still limited by the amount of time to 
enter the parameters into the GUI. However, since imaging for most features is not highly 
sensitive to most of the parameters, it is feasible to present the operator with a subset of pre-
loaded conditions, chosen by mouse click to allow even more rapid interchange. When 
imaging a vessel with a half annulus, most vessels could be imaged with a fixed orientation, 
and when we were testing scattering distance by manipulating the half annulus parameters, 
we maintained a fixed orientation despite the vessels being at various orientations. Likewise, 
we used a half annulus of a fixed size with a moderate inner radius to investigate scattering 
direction by changing the orientation of the split annulus. It is possible that our parameter 
space did not include the optimal conditions for orientation and small distances and additional 
experiments could yield even better results. 

As mentioned previously, the mirror flipping that our SLM goes through causes lines 
through the image that we removed computationally in post-processing. There are options for 
electronically suppressing these [26], as well as using more complex controller to avoid this 
problem. 

Lastly, as we change aperture sizes, the amount of light directed to the “ON” and “OFF” 
detectors varies markedly. This required changing the voltage to the APD detectors between 
conditions. While reasonable presets for these voltages were used and are under computer 
control, we also need to better calibrate the gain changes to provide calibrated contrast values. 
We do keep the temperatures of the APD’s controlled so gains are sufficiently stable to make 
this feasible. 

5. Conclusions 

An SLM placed at a retinal conjugate plane can effectively be used as a rapidly configurable 
aperture enabling efficient collection of multiply scattered light in various directions and 
distances of particular retinal features. The retinal microvascular network is complex in 
regards to vessel orientation and size. Utilizing an approach that automates through a series of 
configurations will be particularly useful when studying retinal vascular diseases such as 
diabetic retinopathy and understanding the changes that occur to the vessel wall structure. 
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